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Abstract

Debugging real systems is hard, requires deep knowledge of
the code, and is time-consuming. Bug reports rarely provide
sufficient information, thus forcing developers to turn into
detectives searching for an explanation of how the program
could have arrived at the reported failure point.

Execution synthesis is a technique for automating this de-
tective work: given a program and a bug report, it automat-
ically produces an execution of the program that leads to
the reported bug symptoms. Using a combination of static
analysis and symbolic execution, it “synthesizes” a thread
schedule and various required program inputs that cause the
bug to manifest. The synthesized execution can be played
back deterministically in a regular debugger, like gdb. This
is particularly useful in debugging concurrency bugs.

Our technique requires no runtime tracing or program
modifications, thus incurring no runtime overhead and being
practical for use in production systems. We evaluate ESD—
a debugger based on execution synthesis—on popular soft-
ware (e.g., the SQLite database, ghttpd Web server, HawkNL
network library, UNIX utilities): starting from mere bug re-
ports, ESD reproduces on its own several real concurrency
and memory safety bugs in less than three minutes.

Categories and Subject Descriptors D.2.2.5 [Software En-

gineering]: Testing and Debugging—Debugging aids

General Terms Reliability

Keywords automated debugging, symbolic execution

1. Introduction

Developing software is a challenging endeavor, and debug-
ging it is even harder. With increasing parallelism in both
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hardware and software, the classic problem of bugs in se-
quential execution is now being compounded by concur-
rency bugs and other hard-to-reproduce behavior.

To fix a bug, developers traditionally try to reproduce
it and observe its manifestation in a debugger. Alas, this
approach is often challenging, especially for concurrency
bugs—in a recent survey, almost 75% of respondents con-
sidered reproducibility to be hard or very hard [17]. There
are multiple reasons for this: First, complex sequences of
low-probability events (e.g., a particular thread schedule) are
required for a concurrency bug to manifest, and program-
mers do not have the means of directly controlling such
events. Second, the probe effect—unintended alteration of
program behavior through the introduction of instrumen-
tation and breakpoints [15]—can make concurrency bugs
“vanish” when hunted with a debugger. Third, variations in
the OS and runtime environment (e.g., kernel or library ver-
sion differences) may make it practically impossible to re-
produce a bug exactly as it occurred at the end user’s site.

Modern software is increasingly parallel, which makes it
that much more difficult to debug. Currently, more than 70%
of concurrency bugs take many days or even months to an-
alyze and diagnose [17]. This increases the cost of main-
taining and evolving parallel software, and consumers must
wait a long time before fixes become available. Moreover,
the large amount of guesswork involved in debugging leads
to error-prone patches, with many concurrency bug fixes ei-
ther introducing new bugs or, instead of fixing the underlying
bug, merely decreasing its probability of occurrence [27]. In-
creasingly parallel hardware causes software to experience
increasingly concurrent executions, making latent bugs more
likely to manifest, yet no easier to fix.

In this paper, we introduce execution synthesis, a tech-
nique for automatically finding “explanations” for hard-to-
reproduce bugs. Execution synthesis takes as input a pro-
gram plus a bug report and produces an execution of that pro-
gram that causes the reported bug to manifest deterministi-
cally. Our technique requires no tracing or execution record-
ing at the end user’s site, making it well suited for de-
bugging long-running, performance-sensitive software, like
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Web servers, database systems, e-mail servers, application
servers, game servers, etc.

Successful debugging with execution synthesis is premised
on the observation that, in order to diagnose a given bug, a
developer rarely needs to replay the exact same execution
that evidenced the bug at the user’s site. Instead, playing
back any feasible execution that exhibits that same bug will
typically be sufficient. The execution produced by execution
synthesis provides an explanation of the bug, even if it is
not precisely the execution experienced by the user report-
ing the bug. A synthesized execution provides the causality
chain leading to the bug, thus eliminating the guessing and
lengthy detective work involved in debugging. In addition
to a bug report, developers now also have an execution they
can play back in their debugger. This allows them to deter-
ministically observe the buggy behavior and to use classic
techniques for finding a suitable bug fix, such as step-by-step
execution and data structure dumps.

Execution synthesis consists of two parts. Sequential

path synthesis combines symbolic execution with context-
sensitive inter- and intra-procedural static analysis to effi-
ciently produce a guaranteed-feasible sequential execution
path from the start of the program to any target basic block
in each program thread. Thread schedule synthesis finds a
schedule for interleaving thread-level sequential paths such
that the program’s execution exhibits the reported bug.

We prototyped the proposed technique in ESD, a tool
that automatically analyzes common elements provided in
bug reports (coredumps, stack traces, etc.), synthesizes an
execution that leads to the reported misbehavior, and allows
developers to play back this execution in a debugger. ESD is
practical and scales to real systems. For example, it takes less
than three minutes to synthesize an execution for a deadlock
bug in SQLite, an embedded database engine with over 100
thousand lines of C/C++ code [32] used in Firefox, Skype,
Mac OS X, Symbian OS, and other popular software [36].

In this paper, we give an overview of ESD (§2), de-
scribe sequential path synthesis (§3), thread schedule syn-
thesis (§4), and execution playback (§5). We then present the
ESD implementation (§6), an experimental evaluation (§7),
discussion (§8), related work (§9), and conclusion (§10).

2. Overview

The input to ESD consists of the coredump associated with a
bug report and the program the developer is trying to debug.
ESD then outputs a trace that can be played back in a de-
bugger with the ESD runtime environment. Given a class of
bugs, ESD can extract from the coredump all information it
needs to find a way to reproduce that class of bugs (e.g., for
debugging deadlocks, it extracts the call stacks of the dead-
locked threads). At the end user site, the buggy program is
run normally, i.e., without instrumentation or special envi-
ronments, no annotations, and no debug symbols.

...

idx=0;

1: if (getchar() == ’m’)

2: idx++;

3: if (getenv("mode")[0] == ’Y’)

4: mode=MOD_Y;

5: else

6: mode=MOD_Z;

...

7: CriticalSection() {

8: lock(M1);

9: lock(M2);

...

10: if (mode==MOD_Y && idx==1) {

11: unlock(M1);

...

12: lock(M1);

}

...

Listing 1: Example of a deadlock bug. Two threads executing
this code may deadlock if the condition on line 10 is true and
one thread is preempted right after executing statement 11.

Execution synthesis shifts the burden of bug reproduction
from the user side to the developer side, thus avoiding the
performance and storage overhead of runtime tracing. This
overhead can be substantial: a long-running server that han-
dles many requests and fails after several weeks of execution
can incur high cumulative recording overhead.

This design choice means that ESD must reproduce the
behavior of a bug without knowledge of some crucial run-
time information, such as the inputs to the program or the
schedule of its threads. To remove a bug, one need not see
the exact same execution that caused the bug to manifest at
the end user, but merely some execution that triggers the bug.
For this slightly more modest goal, runtime information is
not strictly necessary—it can all be inferred with a combina-
tion of program analysis and symbolic execution.

Besides automating the laborious parts of debugging, ex-
ecution synthesis may even generate a path to the bug that is
shorter than (but still equivalent to) the one that occurred at
the user’s site, thus further saving debugging time.

We use the example in Listing 1 to illustrate how execu-
tion synthesis works. In this example, two threads executing
CriticalSection() concurrently may deadlock if the condition
on line 10 is true. An execution in which the threads dead-
lock is the following: one thread runs up to line 11 and is
preempted right after the unlock call, then a second thread
executes up to line 9 and blocks waiting for mutex M2, then
the first thread resumes execution and blocks waiting for M1

on line 12. The program is now deadlocked.
The bug report for this deadlock would likely contain the

final stack trace of each thread, but would be missing sev-
eral important pieces of information needed for debugging,
such as the return values of external calls—getchar() and
getenv()—and the interleaving of threads. ESD “fills in the
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blanks” and infers two key aspects of the buggy execution:
a program path in each thread from the beginning to where
the bug occurs, and a schedule that makes this path feasible.

To synthesize the path through the program for each
thread, ESD first statically analyzes the program and then
performs a dynamic symbolic analysis. In the static analysis
phase, ESD computes the control flow graph (CFG) and per-
forms intra- and inter-procedural data flow analysis to iden-
tify the set of paths through the graph that reach the bug loca-
tion. For the example in Listing 1, ESD’s static analysis iden-
tifies two paths that could lead the first thread to statement
12: 1→2→3→4→7→...→12 and 1→3→4→7→...→12,
both of which require getenv("mode") to return a string start-
ing with ‘Y’. Since ESD cannot decide statically whether
statement 2 is part of the path to statement 12 or not, both
alternatives are considered possible. For the second thread,
a similar analysis finds four possible paths to statement 9.

In the dynamic analysis phase, ESD symbolically exe-
cutes [23] the program in search of a guaranteed-feasible
path. The search space is restricted to the paths identified
during the static analysis phase. In our example, ESD deter-
mines that only path 1→2→3→4→7→...→12 can take the
first thread to statement 12, since it is the only one that sets
idx to value 1. This dynamic phase also identifies the need
for getchar() to return ‘m’. For the second thread, all four
paths appear feasible for the time being.

Symbolic execution suffers from the notorious “path ex-
plosion” problem [3]. Execution synthesis therefore incorpo-
rates a number of techniques to cope with the large number
of paths that typically get explored during symbolic execu-
tion. The foremost of these techniques is the use of a prox-

imity heuristic to guide symbolic execution on those paths
most likely to reach the bug. ESD uses the CFG to estimate
the distance (in basic blocks) from any given node in the
CFG to the bug location. Using this estimate, the exploration
of paths is steered toward choices that have a shorter dis-
tance to the bug, thus enabling ESD to find a suitable path
considerably faster than mere symbolic execution.

For multi-threaded programs, synthesizing the execution
path for each thread is not enough—ESD must also identify
a thread interleaving that makes these paths possible. ESD
does this thread schedule search within the dynamic analysis
phase. To make it fast, ESD uses the stack traces from the bug
report to attempt thread preemptions in strategic places—
such as before calls to mutex lock operations—that have
high probability of leading to the desired schedule. In our
example, ESD identifies the required preemption points after
statement 11 (first thread) and statement 9 (second thread).
It also propagates the constraints on getchar() and getenv()

in the first thread to the path choice for the second thread.
The novelty of execution synthesis is its ability to recon-

struct bug-bound executions without recording program in-
puts or events that induce non-determinism in program exe-
cution, and without requiring any alteration of the program

or its environment. This makes ESD practical for real soft-
ware running in performance-critical environments.

3. Sequential Path Synthesis

In this section we describe how ESD finds a sequential bug-
bound execution path within each thread of a program: first
it identifies a search goal (§3.1), then performs static analy-
sis (§3.2), and finally a dynamic search (§3.3).

3.1 Determining the Goal

For each thread present in the bug report, we define the goal

as a tuple <B,C> containing the basic block B in which
the bug-induced failure was detected, and the condition C on
program state that held true when the bug manifested.

ESD can automatically extract B and C from a coredump
for most types of crashes, hangs, and wrong-output failures.
The extraction process depends on the type of the bug. For
example, in the case of a segmentation fault, B is determined
by the instruction that triggered the access violation and C

indicates the value of the corresponding pointer (e.g, NULL),
extracted from the coredump. For a deadlock, B contains
the lock statement the thread was blocked on at the time
the program hung, and C captures the fact that there was
a circular wait between the deadlocked threads. As a final
example, for a race condition, B is where the inconsistency
was detected—not where the race itself occurred—such as
a failed assert, and C is the observed inconsistency (e.g., a
negation of the assert condition).

If the crash occurs inside an external library, B contains
the call to the external library function and C indicates that
the values of the arguments are the ones with which that
library function was called when the crash occurred. The
values of the arguments are extracted from the coredump and
the call stack in the bug report.

3.2 Static Phase of Path Search

Once the goal <B,C> has been established, ESD does a
static analysis pass to narrow down the search space of paths
to the goal. This phase operates on the program’s control
flow graph (CFG) and data flow graph (DFG). First, ESD
identifies the critical edges in the CFG, i.e., those that must
be present on the path to the goal. Then, ESD identifies inter-
mediate goals, i.e., basic blocks that, according to the DFG,
must execute in order for the critical edges to be traversable.
The intermediate goals are then passed to the dynamic anal-
ysis phase, described in the next section.

ESD first computes the full inter-procedural CFG of the
program and applies all the optimizations that were applied
to the program version that experienced the reported bug. It
performs alias analysis and resolves as many function point-
ers as possible, replacing them with the corresponding di-
rect calls; this can substantially simplify the CFG. ESD can
handle the case when not all function pointers are resolved,
though it may lose precision. In this case, subsequent analy-
ses will still be sound and complete, but may take longer to
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execute. ESD also eliminates all basic blocks that cannot be
reached from the start of the program (i.e., dead code) and
all basic blocks from which there is no path to B.

A critical edge is an edge that must be followed when
searching for a path to the goal. Conditional branch instruc-
tions generate two outgoing edges in the CFG, correspond-
ing to the true and else branches, respectively. If, for a given
branch instruction b, only one of the outgoing edges can be
part of a path to the goal, then it is a critical edge. When
branch instruction b is encountered during dynamic analy-
sis, ESD will ensure the critical edge is followed; otherwise,
the search would miss the goal.

ESD identifies the critical edges by starting from the goal
block and working backward, in a manner similar to back-
ward slicing [37]. Starting from B, the algorithm finds at
each step a predecessor node in the CFG. For each such node,
if only one of its outgoing edges can lead to B, then that
edge is marked as critical. The current version of ESD can
only explore one predecessor for each node, so as soon as
a block with multiple predecessors is found, the marking of
critical edges stops and ESD moves to the next step. A more
effective, but potentially slower, algorithm would explore all
predecessors and identify multiple sets of critical edges.

An intermediate goal is a basic block in the CFG that is
guaranteed to be present on the path to the goal block B, i.e.,
it is a “must have.” The knowledge that certain instructions
must be executed helps the dynamic analysis break down the
search for a path to the final goal into smaller searches for
sub-paths from one intermediate goal to the next.

To determine intermediate goals, ESD relies on the criti-
cal edges. For each critical edge, the corresponding branch
condition and its desired value (true or false) are retrieved.
For each variable x,y, ... in the branch condition, ESD finds
the sets of instructions Dx,Dy, ... that are reaching defini-
tions [1] of the variable. It then looks for combinations of
instructions from Dx,Dy, ... that would give the branch con-
dition the desired value, i.e., instructions for which there is a
static guarantee that, if they were executed, the critical edge
would be followed. When such a combination is found, the
basic blocks that contain the reaching definitions in the com-
bination are marked as intermediate goals. Should more than
one combination exist, the corresponding sets of instructions
are marked as disjunctive sets of intermediate goals.

While condition C in goal <B,C> is not explicitly used
in the above algorithms, ESD does use C in its analyses. To a
first degree of approximation, basic block B is replaced in the
program with a statement of the form if (C) then BugStrikes,
and the static analysis phase runs on the transformed pro-
gram, with BugStrikes as the goal basic block. By finding
a path along which the program executes BugStrikes, ESD
will have found a path that executes block B while condition
C holds, i.e., a path that reaches the original goal <B,C>.
Some conditions, however, cannot be readily expressed in
this way. For example, a deadlock condition is a property

that spans the sequential execution paths of multiple threads.
For such cases, ESD has special-case handling to check con-
dition C during the dynamic phase; this will be further de-
scribed in §4.

3.3 Dynamic Phase of Path Search

The previous section showed how ESD statically derives
intermediate goals, producing an over-approximation of the
path from program start to goal <B,C>. We now describe
how ESD employs symbolic execution [23] to narrow down
this over-approximation into one feasible path to the goal.

To perform the dynamic analysis, ESD runs program P

with symbolic inputs that are initially unconstrained, i.e.,
which can take on any value, unlike regular “concrete” in-
puts. Correspondingly, program variables are assigned sym-
bolic values. When the program encounters a branch that in-
volves symbolic values—either program variables or inputs
from the environment—program state is forked to produce
two parallel executions, one following each outcome of the
branch (we say that the symbolic branch results in two “exe-
cution states”). Program variables are constrained in the two
execution states so as to make the branch condition evaluate
to true or false, respectively. If, due to existing constraints,
one of the branches is not feasible, then no forking occurs.

For example, the first if statement in Listing 1 depends on
the return value of getchar(). ESD therefore forks off a sep-
arate execution in which getchar()=‘m’. The current execu-
tion continues with getchar() 6=‘m’. Executions recursively
split into sub-executions at each subsequent branch, creat-
ing an execution tree like the one in Figure 1. Constraints
on program state accumulate in each independent execution.
Once an execution finishes, the conjunction of all constraints
along the path to that terminal leaf node can be solved to
produce a set of program inputs that exercises that particu-
lar path. For example, the rightmost leaf execution (after the
third fork) has constraints mode=MOD_Y and idx=1 and the
first character of getenv()’s return must be ‘Y’ and the return
of getchar() must be ‘m’. Everything else is unconstrained
in this particular execution.

getchar()=='m'

getenv("mode")[0]==’Y’

True

False

False

True

mode==MOD_Y

&& idx==1

mode==MOD_Y

&& idx==1

TrueFalse TrueFalse

Figure 1: Execution tree for the example in Listing 1.

An execution state consists of a program counter, a stack,
and an address space. Such states can be “executed,” i.e.,
the instruction pointed to by the program counter is executed
and may cause corresponding updates to the state’s stack and
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address space. We chose this representation for compatibility
with the Klee symbolic execution engine [6], since the ESD
prototype relies on (a modified version of) Klee.

As new executions are forked, the corresponding execu-
tion states are added to a priority queue. At every step of the
symbolic execution, a state is chosen from the priority queue
and one instruction is executed in that state, after which a
new choice is made, and so on. In this way, the entire space
of execution paths can be explored, and the symbolic exe-
cution engine switches from one execution to the other, de-
pending on the ordering of the states in the queue. When the
goal <B,C> is encountered in one of these executions, ESD
knows it has found a feasible path from start to goal.

There are two key challenges, though: the execution
tree grows very fast (the notorious path explosion prob-
lem [3]), and determining the satisfiability of constraints at
every branch condition, in order to determine which of the
branches are feasible, is CPU-intensive. These two proper-
ties make symbolic execution infeasible for large programs.
For ESD to be practical, the search for a path to the goal
must be very focused: the less of the tree is expanded and
searched, the less CPU and memory are consumed.

ESD uses three key techniques to focus the search: First,
it uses statically derived intermediate goals (§3.2) as anchor
points in the search space, to divide a big search into sev-
eral small searches. Second, ESD leverages the information
about critical edges (§3.2) to promptly abandon during sym-
bolic execution paths that are statically known to not lead
to the goal. Third, ESD orders the priority queue of execu-
tion states based on each state’s estimated proximity to the
next intermediate goal. In this way, the search is consistently
steered toward choosing and exploring executions that ap-
pear to be more likely to reach the intermediate goal soon.

We refer to this latter technique as proximity-guided
search and describe it in the next section. Due to space con-
straints, we omit details on path elimination based on critical
edges and on the evaluation of complex goal conditions.

3.4 Proximity-Guided Path Search

ESD uses guided forward symbolic execution to search for
a path that reaches the goal extracted from the bug report.
In doing so, ESD uses a proximity heuristic to estimate how
long it would take each execution state to reach the goal, and
it then executes the one that is closest.

The proximity of an execution state to a goal equals the
least number of instructions ESD estimates would need to be
executed in order to reach that goal from the current program
counter in the execution state (line 1 in Algorithm 1). This
bound aims to be as tight as possible and can be computed
with low overhead.

When the goal is inside the currently executing proce-
dure, function distance computes the proximity. If there are
no calls to other procedures, the distance is the length of
the path to the goal with the fewest number of instructions
(lines 9-12). If, however, any of the instructions along the

Algorithm 1: Heuristic Proximity to Goal (Simplified)
Input: Execution state S, goal G (potentially intermediate)
Output: Estimate of S’s distance to G

dmin← distance(S.pc,G)1

if dmin = ∞ then2

foreach procedure π ∈ S.callStack do3

Ira← instruction to be executed after π call returns4

d← dist2ret(S.pc)+distance(Ira,G)+15

dmin←min(dmin,d)6

return dmin7

function distance ( instruction I, instruction G )8

dmin← ∞9

if I and G are in the same procedure π then10

foreach acyclic path ρ in π’s CFG from I to G do11

d← number of instructions on path ρ12

foreach call to procedure γ along path ρ do13

14 d← d +dist2ret(γ .startInstruction)14

dmin←min(dmin,d)15

return dmin16

function dist2ret ( instruction I )17

dmin← ∞18

π← procedure to which I belongs19

20 foreach return instruction R in π do20

dmin←min(dmin, distance(I,R) )21

return dmin22

path are calls to other procedures, then ESD factors in the
costs of executing those procedures by adding to the path
length the cost of the calls (lines 13-14).

The cost of calling a procedure corresponds to the number
of instructions along the shortest path from the procedure’s
start instruction to the nearest return point. This is a special
case of computing the distance of an arbitrary instruction to
the nearest return (function dist2ret, lines 17–22).

When the goal is not in the currently executing procedure,
it may be reached via a procedure that is in a frame higher
up in the call stack. In other words, the currently executing
procedure may return, and the caller of the procedure may be
able to reach the goal, or the caller’s caller may do so, etc.
Thus, ESD computes a distance estimate for each function
on the call stack of the current execution state (lines 3-4). It
takes into account the instructions that have to be executed
to return from the call plus the distance to the goal for the
instruction that will be executed right after the call returns
(line 5). The final distance to the goal is the minimum among
the distances for each function on the call stack (line 6).

Each execution state S in ESD has n distances associated
with it, corresponding to S’s distance to the G1, ...,Gn−1 in-
termediate goals inferred through static analysis and to the
final goal Gn = B. The closer an intermediate goal truly
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is, the more accurate the distance estimate. ESD maintains
n “virtual” priority queues Q1, ...,Qn, which provide an or-
dering of the state’s distance to the respective goal: the state
at the front of Qi has the shortest estimated distance to goal
Gi. We refer to these queues as “virtual” because the queue
elements are just pointers to the execution states. Each state
can be found on each of the virtual queues.

At each step of the dynamic analysis, ESD picks a state S

from the front of one of the queues. The choice of which
queue to consult is uniformly random across the queues.
The front state is dequeued, and the instruction at S.pc is
symbolically executed, which updates the program counter,
stack, and address space, and recomputes the distances from
the new S.pc. The rationale of choosing states this way is to
progressively advance states toward the nearest intermediate
goal. Since the static analysis does not provide an ordering of
the intermediate goals, ESD cannot choose which goal to try
to reach first. It is possible, in principle, for the static phase
to provide a partial order on the intermediate goals based on
the inter-procedural CFG.

Once a state has reached the final goal (i.e., S.pc = B)
the search completes: ESD has found a feasible path that
explains the buggy behavior. ESD solves the constraints
that accumulated along the path and computes all the inputs
required for the program to execute that path, in a way
similar to automated test generation [6, 18]. ESD relies on
symbolic models of the filesystem [6] and the network stack
to ensure all symbolic I/O stays consistent.

Several programming constructs (such as recursion, sys-
tem calls, and indirect calls) can pose challenges to the com-
putation of a distance heuristic. We choose to increase the
cost of a path that encounters recursion and system calls by
a fixed amount—e.g., if a path leads to a recursive or multi-
level recursive call, we assign a weight of 1000 instructions
to that call. Indirect calls are resolved with alias analysis; if
that is not possible, then ESD averages the cost of the call
instruction across all possible targets. The distance estimate
is just a heuristic, so a wrong choice would merely make the
path search take longer, but not affect correctness.

Another concern in heuristic-driven searches are local
minima. Fortunately, they are a danger mainly for search
processes that cannot backtrack; in path search, ESD can
backtrack to execution states that are higher up in the exe-
cution tree, thus avoiding getting stuck in local minima.

We found that the three techniques of focusing the
search—proximity-based guidance, the use of intermediate
goals, and path abandonment based on critical edges—can
speed up the search by several orders of magnitude com-
pared to other search strategies (§7).

Nevertheless, further techniques could be employed to
improve the search strategy. For instance, if the initializa-
tion phase of the program can be reproduced by other means,
such as from an existing test case (ESD does not require ex-
isting test cases), ESD could run concretely the initialization

phase and automatically switch from concrete to symbolic
execution later in the execution of the program [8, 19], thus
reducing execution synthesis time.

4. Thread Schedule Synthesis

In the case of multi-threaded programs, ESD must also syn-
thesize a schedule for interleaving the execution paths of the
individual threads. It seeks a single-processor, sequential
execution that consists of contiguous segments from the in-
dividual threads’ paths. In other words, ESD synthesizes a
serialized execution of the multi-threaded program.

To do so, ESD employs symbolic execution, but instead of
only treating inputs and variables as symbolic, it also treats
the underlying scheduler’s decisions as symbolic. It asso-
ciates with each preemption point (i.e., each point where
the scheduler could preempt a thread) a hypothetical branch
instruction that is conditional on a single-bit predicate: if
true, the currently running thread is preempted, otherwise
not. These single-bit predicates1 can be viewed as bits in the
representation of a variable that represents the serial sched-
ule. ESD treats this variable as symbolic, and the question
becomes: What value of this schedule variable would cause
the corresponding execution to exhibit the reported bug?

Preemption points of interest are before and after concur-
rency-sensitive operations: load instructions, store instruc-
tions, and calls to synchronization primitives. While con-
ceptually the sequential path synthesis phase is separate
from schedule synthesis, ESD overlaps them and synthe-
sizes one “global” sequential path, by exploring the possible
thread preemptions as part of the sequential path synthesis.

Just as for sequential path synthesis, ESD employs heuris-
tics to make the search for a thread schedule efficient. It
is substantially easier to choose the right heuristic if ESD
knows the kind of concurrency bug it is trying to debug, and
this can often be inferred from the coredump. ESD can syn-
thesize schedules for deadlocks (§4.1) and data races (§4.2).

4.1 Deadlocks

When looking for a path to a deadlock, the preemption points
of interest are solely the calls to synchronization primitives,
like mutex lock and unlock. In most programs, there are
orders-of-magnitude fewer such calls than branches that de-
pend (directly or indirectly) on symbolic inputs, so the mag-
nitude of the deadlock schedule search problem can be sub-
stantially smaller than that of sequential path search.

Moreover, information about the deadlocked threads’ fi-
nal call stacks provides strong clues as to how threads must
interleave in order to deadlock. ESD leverages these clues to
bias the search toward interleavings that are more likely to
lead to the reported deadlock.

For the deadlock example in Listing 1, a coredump would
indicate call stacks that (in stylized form) would look like

1 For programs with more than two threads, predicates have multiple bits,
to indicate which thread is scheduled in place of the currently running one.
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T1 : [... 12] and T2 : [... 9], meaning that thread T1 was blocked
in a lock call made from line 12, while T2 was blocked in a
lock call made from line 9. The call stack shows the call
sequence that led to the lock request that blocked the thread.
This lock request appears in the last frame, and we refer to it
as the thread’s inner lock. We call outer locks those that are
already held by the deadlocked thread. This naming results
from the fact that a deadlock typically arises from nested
locks [27], where an inner lock is requested while holding
an outer lock. At the time of deadlock, the acquisitions of
the outer locks are not visible in the call stack anymore.

For the example bug, the search goal for each thread
is T1 :<12,T2@9> and T2 :<9,T1@12>, meaning that T1

blocks at line 12 while T2 blocks at line 9. ESD now seeks
an interleaved execution that leads to this goal, without any
knowledge of where the outer locks were acquired.

Any time ESD encounters a lock or unlock operation, it
forks off an execution state in which the current thread is
preempted. The running execution state maintains a pointer
to that forked state, in case ESD needs to return to it to ex-
plore alternate schedules. More generally, we augment each
execution state S with a map KS : mutex→ execution state.
An element <M,S′>∈ KS indicates that S is exploring one
schedule outcome connected with the acquisition of mu-
tex M, while S′ is the starting point for exploring alter-
native scheduling outcomes. A snapshot entry <M,S′> is
deleted as soon as M is unlocked. The size of KS is therefore
bounded by the program’s maximum depth of lock nesting.
ESD leverages Klee’s copy-on-write mechanisms at the level
of memory objects to maximize memory sharing between
execution states (§6.1). As a result, snapshots are cheap.

We augment execution state S with S.scheduleDistance,
an estimate of how much context switching is required to
reach the deadlock. For the case of two-thread deadlocks,
this schedule distance can take one of two values: far or
near. ESD computes a weighted average of the path distance
estimate (§3.4) and the schedule distance estimate, with a
heavy bias toward schedule distance. The virtual state pri-
ority queues are kept sorted by this weighted average. The
bias ensures that low-schedule-distance execution states are
selected preferentially over low-path-distance states.

The general strategy for schedule synthesis is to help each
thread “find” its outer lock as quickly as possible.

If a thread T1 requests a mutex M that is free, ESD forks
state S′ from S and allows the mutex acquisition to proceed
in S, while in S′ thread T1 is preempted before acquiring M.
In S, ESD must decide whether to let T1 continue running
after having acquired M, or to preempt it. If, by acquiring
M, T1 did not acquire its inner lock (i.e., the S.pc of the lock
statement is different from that in the goal), then ESD lets T1

run unimpeded. However, if T1 just acquired its inner lock,
then ESD preempts it and marks S.scheduleDistance = near.
This keeps M locked and creates the conditions for some
other thread T2 to request M; when this happens, it is a

signal that M could be T2’s outer lock. The updated schedule
distance ensures state S is favored for execution over other
states that have no indication of being close to the deadlock.

If thread T1 requests mutex M, and M is currently held by
another thread T2, ESD must decide whether to “roll back” T2

to make M available to T1, or to let T1 wait. If M is T2’s inner
lock, then it means that M could be T1’s outer lock, so ESD
tries to make M available, to give T1 a chance to acquire it:
ESD switches to state Sk (from the <M,Sk> snapshot taken
just prior to T2 acquiring M), which moves execution back
to the state in which T2 got preempted prior to acquiring M.

ESD does this by setting, for each state in KS, the schedule
distance to near. It then sets the current state’s schedule
distance to far, to deprioritize it. This creates the conditions
for T1 to acquire M, its potential outer lock. When T2 later
resumes in a state in which T2 does not hold M, mutex M is
likely to be held by T1 and about to be requested by T2, thus
increasing the chances of arriving at the desired deadlock.

Whenever a mutex M is unlocked, the snapshot corre-
sponding to M is deleted, i.e., KS ← KS − <M,∗>. ESD
deletes these snapshots because a mutex that is free (un-
locked) cannot be among the mutexes that cause a deadlock.

We illustrate on the example from Listing 1, for which
the search goals are T1 :<12,T2@9> and T2 :<9,T1@12>.

Thread T1 needs to get to line 12. ESD takes T1 rather un-
eventfully up to line 10, with snapshots having been saved
prior to the lock operations at line 8 and 9. Once ESD en-
counters condition mode = MOD_Y ∧ idx = 1 on line 10,
it must follow the true-branch, because it is a critical edge.
This brings T1 eventually to line 12. By this time, due to
the unlock on line 11, there is only one snapshot left in
KS = {<M2,S9>}, from the lock on line 9. At line 12, a
copy of the current state is forked and KS = {<M2,S9>,

<M1,S12>}. T1 acquires M1 and then T1 is preempted.
T2 runs until it reaches line 8, where it blocks for M1

(held by T1). Since M1 was acquired as T1’s inner lock, ESD
switches to state S12, in which T1 is preempted immediately
prior to acquiring M1. This allows T2 to run and acquire M1,
but it blocks again on line 9 when trying to get M2 (held
by T1). T1 is scheduled back, and the program is now in the
situation that T1 is holding M2 while waiting for M1 at line
12, and T2 is holding M1 while waiting for M2 at line 9—the
deadlock goal. ESD saves the required inputs for getchar()

and getenv() along with the synthesized schedule (i.e., the
one in which T1 acquires M1 and M2, then releases M1, then
T2 gets to run until it acquires M1 and blocks on M2, after
which T1 gets to run again and blocks on M1).

This algorithm generalizes in a relatively obvious way to
more than two threads. Our ESD prototype can synthesize
thread schedules for deadlocks involving an arbitrary num-
ber of threads, even when it is just a subset of a program’s
threads that are involved in the deadlock.

During schedule synthesis, ESD automatically detects
mutex deadlocks by using a deadlock detector based on a re-

327



source allocation graph [22]. Deadlocks involving condition
variables are more challenging to detect automatically—
inferring whether a thread that is waiting on a condition
variable will eventually be signaled by another thread is un-
decidable in general. However, ESD can check for the case
when no thread can make any progress and, if all threads are
waiting either to be signaled, to acquire a mutex, or to be
joined by another thread, then ESD identifies the situation as
a deadlock.

When searching for a schedule that reproduces a reported
deadlock, ESD may encounter deadlocks that do not match
the reported bug. This means ESD has discovered a different
bug. It records the information on how to reproduce this
deadlock, notifies the developer, rolls back to a previous
snapshot, and resumes the search for the reported deadlock.

4.2 Data Races

To find paths to data races, ESD takes an approach similar
to the one for deadlocks: place preemptions at all the rel-
evant places, then explore first those schedules most likely
to reveal the data race. Snapshotting is used in much the
same way, piggybacking on the copy-on-write mechanism
for managing execution states. In addition to synchroniza-
tion primitives, ESD also introduces preemptions before in-
structions flagged as potential data races.

ESD uses a dynamic data race detection algorithm similar
to Eraser [34] and inserts preemption points wherever po-
tentially harmful data races [30] are detected. Normally, dy-
namic data race detectors can miss races, because they only
observe execution paths exercised by the given workload.
However, by using symbolic execution, ESD can expose to
the detection algorithm an arbitrary number of different ex-
ecution paths, independently of workload.

In order to avoid unnecessary thread schedules early in
the execution of the program, ESD uses an additional heuris-
tic. It identifies the longest common prefix of the final thread
call stacks in the coredump and inserts preemptions only in
executions whose call stacks contain this prefix. If the last
frame of the common prefix corresponds to procedure p,
then p is set as an intermediate goal for each thread—for the
example in Listing 1, p would be the entry into CriticalSec-

tion. Once all threads reach their respective goals (or when
no threads can make any further progress), ESD’s scheduler
starts forking execution states on fine-grain scheduling de-
cisions and checks for data races. We found this heuristic
to work well in practice, especially considering that many
applications run the same code in most of their threads.

For simplicity and clarity, we assume a sequential consis-
tency model for memory shared among threads, an assump-
tion present in most recent systems dealing with concurrency
bugs (such as Chess [29]). An immediate consequence is
that each machine instruction is assumed to execute atom-
ically with respect to memory, which simplifies the explo-
ration process. In the case of shared memory with relaxed

consistency, ESD could miss possible paths, but will never
synthesize an infeasible execution leading to a bug goal.

Data race detection can be turned on even when debug-
ging non-race bugs. In this way, ESD can synthesize paths
even to bugs (e.g., deadlocks, buffer overflows) that manifest
only in the presence of data races. Moreover, as with dead-
locks, unknown data races may be fortuitously discovered.

In summary, ESD’s synthesis of bug-bound paths and
schedules exploits features of the corresponding bug re-
port to drastically reduce the search space. While ultimately
equivalent to an exhaustive exploration, ESD uses heuristics
to aggressively steer exploration toward those portions of
the search space that have the highest likelihood of revealing
the desired bug-bound execution.

5. Execution Playback

Once the execution synthesizer (§3–§4) reaches its goal, it
generates an execution file containing the playback informa-
tion. This file is read by the ESD playback environment—the
subject of this section. The goal of playback is to provide de-
velopers an explanation of the bug symptoms, in a way that
allows them to inspect the execution with a classic debugger.

5.1 Synthesized Execution File

In order to achieve the highest possible fidelity, ESD plays
back a reported bug using the native binary that was run by
the end user. The synthesized execution file contains con-
crete values for all input parameters, all interactions with
the external environment (e.g., through system calls), and
the complete thread schedule. For all program input, in-
cluding that coming from the environment, ESD solves the
constraints found during execution synthesis and produces
corresponding concrete values (such as getchar()=‘m’ and
getenv("mode")[0]=‘Y’). This is identical to what automated
test generators do (like DART [18] and Klee [6]), except that
these test generators do not produce thread schedules.

ESD saves the thread schedule of a synthesized execution
in the form of happens-before relations [25] between specific
program instructions. ESD can also save a strict schedule in
the file, by recording the exact instructions on which the con-
text was switched during synthesis, along with the switched
thread identifiers. During the playback phase (§5.2), this
strict schedule will enforce literally a serial execution of the
program, whereas the schedule based on happens-before re-
lations allows playback to proceed with the same degree of
parallelism as the original execution.

5.2 Playback Environment

In order to steer a program into following the steps reflected
in the synthesized execution file, ESD relies on two compo-
nents: one for input playback and one for schedule playback.
For input playback, ESD reuses Klee’s driver, which takes
from the trace the values of command line arguments and
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passes them to the program. This driver also intercepts via
a custom library the calls to the environment and returns the
inputs from the execution file. To preserve the consistency of
the execution, ESD also relies on Klee’s symbolic filesystem
and network models.

To play back the synthesized schedule, ESD gains con-
trol of the concrete execution by intercepting synchroniza-
tion calls with a shim library and by selectively instrument-
ing the binary. The intercepted calls are then coordinated by
ESD’s cooperative scheduler underneath the program being
played back. While, during execution synthesis, the threads
of a program were emulated, during playback the program is
permitted to create native threads and invoke the native syn-
chronization mechanisms. The threads are context-switched
only when this is necessary to satisfy the happens-before re-
lations in the execution file.

ESD can also record and play back an execution serially.
One single thread runs at a time, and all instructions execute
in the exact same order as during synthesis. Serial execu-
tion playback makes it easier for a developer to understand
how the bug is exercised, because the bug’s causality chain
is more obvious. Serial execution is also more precise, if the
program happens to have race conditions. However, perfor-
mance of parallel programs may be negatively affected by
serialization, and in some cases this might matter.

Developers run the buggy program in the playback envi-
ronment and can attach to it with a debugger at any time.
They can repeat the execution over and over again, place
breakpoints, inspect data structures, etc. After fixing the bug,
ESD can be re-run, to check whether there still exists a path
to the bug. This is particularly helpful for concurrency bugs,
where patches often do not directly fix the underlying bug,
but merely decrease its probability of occurrence [27]. If
ESD can no longer synthesize an execution that triggers the
bug, then the patch can be considered successful.

6. Implementation

The ESD prototype currently works for C programs, and we
verified that it works seamlessly with the gdb debugger. For
symbolic execution, we adopted Klee [6] and extended it in
several ways; the most important one is support for multi-
threaded symbolic execution. After describing this extension
in brief (§6.1), we provide a few details related to the imple-
mentation of synthesis and playback (§6.2).

6.1 Multi-threaded Symbolic Execution

Klee [6] is a symbolic virtual machine designed for single-
threaded programs. To allow ESD to explore various thread
schedules, we added support for POSIX threads.

Our extended version supports most common operations,
such as thread, mutex and condition variable management,
including thread-local storage functions. The new Klee
thread functions are handlers that hijack the program’s calls
to the real threads library. To create a simulated thread, ESD

resolves at runtime the associated start routine and points
the thread’s program counter to it, creates the corresponding
internal thread data structures and a new thread stack, and
adds the new thread to the ESD scheduler queue. ESD also
maintains information on the state of mutex variables and on
how threads are joined.

ESD runs one thread at a time. The decision of which
thread to schedule next is made before and after each call to
any of the synchronization functions, or before a load/store
at a program location flagged as a potential data race. Each
execution state has a list of the active threads. To schedule a
thread, ESD replaces the stack and instruction pointer of the
current state with the ones of the next thread to execute.

ESD preserves Klee’s abstraction of a process with an as-
sociated address space, and adds process threads that share
this address space. As a result, the existing copy-on-write
support for forked execution states can be leveraged to re-
duce memory consumption—this is key to ESD’s scalability.

6.2 Execution Synthesis and Playback

For the execution synthesis phase, ESD compiles the pro-
gram to LLVM bitcode [26], a low-level instruction set in
static single assignment form. We chose LLVM because
Klee operates on LLVM and because the associated compiler
infrastructure provides rich static analysis facilities. LLVM
provides load and store instructions up to word-level granu-
larity, thus providing sufficient control for ESD to synthesize
thread schedules that reproduce the desired data races.

We speed up the computation of the distance to the goal
during synthesis by caching computed distances and using
specialized data structures to track search state information.
This optimization is crucial, because execution states in ESD
can be switched at the granularity of individual instructions
(i.e., is done frequently), so the selection of the next state to
execute must be efficient.

During playback, ESD allows the program to create real
threads and to call the real synchronization operations with
the actual arguments passed by the program. The calls are
intercepted in a library shimmed in via LD_PRELOAD. In
here, synchronization operations can be delayed as needed
to preserve the ordering from the synthesized execution file.

Our current prototype can play back deadlocks involving
mutexes and condition variables with negligible overhead.
We are in the process of implementing playback for data
races using PIN [28] for binary instrumentation; ESD can
then control the interleaving of threads’ memory accesses.

7. Evaluation

In this section we evaluate ESD’s effectiveness in repro-
ducing real bugs in real systems (§7.1). We also compare
ESD to other approaches (§7.2) and analyze ESD’s perfor-
mance (§7.3). All reported experiments ran on a 2 GHz
quad-core Xeon E5405 CPU with 4GB of RAM, under 32-
bit Linux. ESD had a total of 2GB of memory available.
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7.1 Real Bugs in Real Systems

ESD succeeds in automating the debugging of real systems
code. Table 1 shows examples of the programs we ran under
ESD, ranging in size across three orders of magnitude: from
over 100,000 LOC (SQLite) down to 100 LOC (mkfifo).

System Bug manifestation Execution synthesis time

SQLite hang 150 seconds
HawkNL hang 122 seconds
ghttpd crash 7 seconds
paste crash 25 seconds
mknod crash 20 seconds
mkdir crash 15 seconds
mkfifo crash 15 seconds
tac crash 11 seconds

Table 1: ESD applied to real bugs: ESD synthesizes an execu-
tion in tens of seconds, while other tools cannot find a path
at all in our experiments capped at 1 hour.

One class of bugs results in hangs. For example, bug
#1672 in SQLite 3.3.0 is a deadlock in the custom recur-
sive lock implementation. SQLite, an embedded database
engine, is a particularly interesting target, since it has a rep-
utation for being highly reliable and the developer-built test
suites achieve 99% statement coverage [36]. This makes us
believe that the remaining bugs are there because they are
particularly hard to reproduce. Another hang bug appears
in HawkNL 1.6b3, a network library for distributed games.
When two threads happen to call nlClose() and nlShutdown()

at the same time on the same socket, HawkNL deadlocks.
Other bugs result in crashes. A security vulnerability in

the ghttpd Web server is caused by a buffer overflow when
processing the URL for GET requests [16]. The overflow
occurs in the vsprintf function when the request is written
to the log. A bug in the paste UNIX utility causes an invalid
free for some inputs. The four bugs in the tac, mkdir,
mknod, and mkfifo UNIX utilities are all segmentation faults,
with the last three occurring only on error handling paths.
The UNIX utilities bugs are reported in [6].

ESD synthesized the bug-bound execution paths entirely
automatically. For most bugs, ESD was able to automatically
retrieve from the coredump the goal <B,C> of the synthe-
sized path. The only exception was ghttpd, whose coredump
contained a corrupt call stack; it took a few minutes to man-
ually reconstruct the correct call stack with gdb. ESD consis-
tently synthesized an execution path to the bug under consid-
eration, output the synthesized execution file (a couple MB
in each case), and played it back deterministically.

Using ESD, we were able to play back each bug in-
side gdb. We perceived no overhead during playback, which
means that ESD does not hurt the developer’s debugging
experience. Even so, performance is rarely of importance,
given that playback is repeatable and deterministic.

It is worth noting that ESD is effective not only for pro-
grams, but also for shared libraries, such as SQLite and

HawkNL. Debugging libraries often has higher impact than
debugging individual programs, because bugs inside li-
braries affect potentially many applications. For example,
SQLite is used in Firefox, iPhone, Mac OS X, McAfee anti-
virus software, Nokia’s Symbian OS, PHP, Skype, and oth-
ers [36]. In order to reproduce library bugs with ESD, one
writes a program that exercises the library through the sus-
pected buggy entry points; ESD then analyzes and symboli-
cally executes these driver programs along with the library.

7.2 Comparison to Alternate Approaches

Having seen ESD to be effective and fast, we now examine
how it stacks up against alternate approaches.

The first approach to reproduce the bugs is brute force
trial-and-error. To measure objectively, we ran several series
of stress tests and random input testing for several hours.
Neither of these efforts caused any of the bugs in Table 1 to
manifest.

Bug finding tools, like Klee [6] and Chess [29], can also
be used to find paths to bugs—these tools produce test cases
meant to reproduce the found bugs. Such a comparison is not
entirely fair, for several reasons. On the one hand, ESD can
synthesize execution paths for bugs that occur in production,
away from ESD, whereas bug finding tools can only repro-
duce bugs that occur under their own close watch. On the
other hand, bug finding tools are not guided toward a spe-
cific bug; their goal is to find previously unknown bugs and
typically aim for high code coverage. Nevertheless, since we
are not aware of other execution synthesis tools, we analyze
the efficiency of ESD’s search via this comparison.

We extended Klee with support for multi-threading and
implemented Chess’s preemption-boundingapproach for ex-
ploring multi-threaded executions [29]. We name the result-
ing tool KC—a hybrid system that embodies the Klee and
Chess techniques. We compare ESD to two different KC
search strategies inherited directly from Klee: DFS, which
can be thought of as equivalent to an exhaustive search,
and RandomPath, a quasi-random strategy meant to maxi-
mize global path coverage. We augmented the corresponding
strategies to encompass all active threads and limit preemp-
tions to two, as done in [29].

We ran both Klee and KC to find a path leading to each
of the sample bugs in Table 1. After running for over one
hour for each bug, neither tool found a path.2 In order to
still have a practical baseline for comparison, we introduced
four null-pointer-dereference bugs in the ls UNIX utility, for
which KC does find a path in less than one hour. The ls utility
has 3 KLOC.

Figure 2 shows the time it takes ESD to find a path vs.
KC’s two different search strategies. ESD is one to several
orders of magnitude faster at finding the path to the target

2 The five bugs in UNIX utilities were originally found with Klee and re-
ported in [6]. Our experiments did not find them perhaps due to differences
in the Klee version and search strategies. ESD was built on top a Klee code
snapshot that was generously provided to us by its authors in Aug. 2008.

330



bug. We do not know if KC would eventually find a path to
the bugs in Table 1 and, if it did, how long that would take.
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Figure 2: Comparison of time to find a path to the bug: ESD
vs. the two variants of KC. Bars that fade at the top indicate
KC did not find a path by the end of the 1-hour experiment.

7.3 Performance Analysis

In order to analyze the impact of this paper’s contributions—
zero-tracing execution path synthesis and the corresponding
heuristics—we developed a microbenchmark, called BPF.
The main purpose of BPF is to profile ESD without the
measurements being influenced by environment interactions,
such as library calls or system calls. For the more general
case, BPF can serve as a way to compare the performance of
automated debugging tools like ESD.

BPF produces synthetic programs that hang and/or crash.
These programs have conditional branch instructions that
depend on program inputs. When using more than one
thread, the crash/hang scenarios depend on both the thread
schedule and program inputs. BPF allows direct control of
five parameters for program generation: number of program
inputs, number of total branches, number of branches de-
pending (directly or indirectly) on inputs, number of threads,
and number of shared locks.

We performed experiments with eight configurations of
BPF, comprising different program sizes. All data points cor-
respond to programs with two threads and two locks, in
which every branch instruction depends (directly or indi-
rectly) on program inputs. There is one deadlock bug in each
generated program. We varied the number of branch instruc-
tions from 23 to 210, which means that the number of possi-
ble branches varied from 24 to 211. We explored other bench-
mark configurations as well, but, given the results shown
here, the results were as expected.

In an attempt to quantify the deadlock probability in the
generated programs, we ran stress tests for one hour on each
program. Neither of them deadlocked, suggesting that each
program has a low probability of deadlocking “in practice,”
making these settings sufficiently interesting for our mea-
surements. We then fed the programs to ESD and required it
to synthesize an execution path exhibiting the deadlock bug.
We confirmed that the synthesized executions indeed lead to
the deadlock, by playing them back in gdb.

Figure 3 shows the time to synthesize an execution as a
function of program complexity (in terms of branches). We
find that ESD’s performance varies roughly as expected; one
exception is the jump from 28 to 29 branches—we suspect
that structural features of the larger program presented an
extra challenge for ESD’s heuristics. Nevertheless, ESD per-
forms well, keeping the time to synthesize a path to under
2 minutes, which is a reasonable amount of time for a de-
veloper to wait. We also included, for reference, the time
taken by KC with the RandPath search strategy; it found a
path within one hour only for the two simplest benchmark-
generated programs. The DFS strategy did not find any path.
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Figure 3: Synthesizing a bug-bound path for programs of
varying complexity with ESD and KC.

An alternate perspective on these results is to view them
in terms of program size. Figure 4 shows the same data, but
in terms of KLOC in the generated programs.
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Figure 4: Synthesis time as a function of program size.

We conclude that ESD offers a practical way to automati-
cally debug reported bugs, starting from just the correspond-
ing bug report. Our evaluation shows that, whereas exhaus-
tive or even improved random searches are unlikely to suc-
ceed in finding a path to the target bugs, ESD’s execution
synthesis heuristics are effective in guiding the search to-
ward reproducing otherwise-elusive bugs.

8. Discussion

In this section we discuss ESD’s usage models, its limita-
tions, and how ESD can complement static analysis tools.

Usage Models: We envision ESD being used in at least two
modes: developers can employ it directly during debugging,
or it can be used for automated bug triage and deduplication.
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When developers are assigned a bug report, they would
pass the reported coredump to ESD, along with a hint for
the type of bug. For the current ESD prototype, this can
be crash, deadlock, or race condition. ESD compiles the
program source code with the standard LLVM tool chain and
uses the resulting bitcode file. Developers can also instruct
ESD to enable various types of detection (e.g., data races)
during path synthesis, using the following command line:

esdsynth <coredump file> <program>

< --crash | --deadlock | --race >

[--with-race-det] [--with-deadlock-det]

ESD then processes the coredump, extracts the necessary
information, and computes the <B,C> goals for synthesis.
It then performs the path and schedule search, and produces
the synthesized execution file. Developers then use the play-
back environment to reproduce the bug and optionally attach
to the program with their favorite debugger:

esdplay <orig program binary> <synthetic exec file>

Another usage model is one in which ESD is part of an au-
tomated bug reporting/triage system, where each incoming
bug report is passed through ESD, to produce a determinis-
tic execution file that gets attached to the bug report. At the
same time, ESD can be used to automatically identify reports
of the same bug: if two synthesized executions are identical,
then they correspond to the same bug.

Limitations: Our approach is based on heuristics and static
analysis to trim down the search space that would other-
wise be too large to explore in a naive approach. Like any
heuristic-based technique, ESD could be imprecise; lack of
precision can increase the time to find a bug, thus hurting
ESD’s efficiency. We did not experience this situation for the
bugs we reproduced with ESD, but the theoretical possibility
exists. If ESD is used as part of a bug triage system, then the
potentially long running times can be amortized by running
them off the critical path of debugging, unlike when ESD is
directly used by a developer.

Execution synthesis may not always be able to repro-
duce a bug. Symbolic execution has inherent limitations
when solving complex constraints, such as finding a string
m for which hashSHA-2(m)=0xf8e28ed7b8db9a. As a result,
ESD would have a hard time finding a program input that
would exercise the then-branch of an if statement involv-
ing the above condition. If there is a bug that manifests only
when this condition holds, ESD will likely not be able to re-
produce it—doing so would amount to breaking the SHA-2
cryptographic hash function [31].

Some coredumps cannot be processed by ESD’s auto-
mated analyzer. For example, if a bug corrupts the stack or
the heap, ESD does not yet know how to repair the data struc-
tures before extracting them and using them for synthesis.
However, in most cases, the call stack can be repaired, and
we are currently implementing automatic stack reconstruc-
tion in ESD. In other cases, obtaining from the coredump the

size of a dynamically allocated buffer can be challenging.
ESD can obtain the size of a dynamically allocated buffer by
parsing the memory allocator metadata, but this requires in-
ferring some of the heap characteristics. E.g., for the glibc
memory allocator, metadata is stored relative to the base ad-
dress of the allocated buffer and can be reliably retrieved
only if the base address can be inferred from the coredump.

ESD currently relies on a 32-bit version of Klee, which
means that it can address at most 4 GB of memory. For large
real programs, this can cause ESD to run out of memory
before finding the desired path. We have recently ported
Klee to 64-bit architectures, but have not yet ported ESD to
the new version of Klee. Once we do so, we expect ESD to
be able to make use of the increasing amounts of physical
memory available on modern machines.

Complementing Static Analysis Tools with ESD: We see
a clear opportunity in using ESD to weed out false positives
generated by static analysis tools, such as race and deadlock
checkers [14]. Static analysis is powerful and typically com-
plete, but these properties come at the price of soundness:
static analyzers commonly produce large numbers of false
positives, and selecting the true positives becomes a labo-
rious human-intensive task. Fortunately, the output of such
tools is already similar to a bug report, so ESD could be used
“out of the box” to validate each suspected bug: if ESD finds
a path to the bug, then it is a true positive. We plan to ex-
plore in future work the synergy between such tools and our
execution synthesis technique.

9. Related Work

In this section we review related work. Some of these prior
works provided inspiration for ESD, while others are related
by virtue of addressing similar problems. We broadly divide
the body of related work into bug finding tools (some of
which focus on inferring inputs, while others focus on find-
ing schedules) and record/replay systems.

Bug Finding Tools – Inputs: There is a rich body of work
focused on discovering bugs in programs [6, 14, 18, 19, 34],
with recent tools typically employing symbolic execution.
ESD builds upon techniques developed for these systems,
most notably Klee [6].

In combining static analysis with symbolic execution, we
were inspired by a series of systems [7, 10, 11] which com-
pute inputs that take a program to a specified undesired state,
such as the location of a crash. Unlike ESD, these systems
are targeted at program states that can be deterministically
reached when given the right program arguments. ESD was
specifically motivated by the difficulty of reproducing elu-
sive “non-deterministic” bugs, hence our emphasis on infer-
ring not only program arguments, but also inputs from the
program’s environment and scheduling decisions. Moreover,
these prior tools require recording of certain program inputs
and/or events; in ESD we go to the extreme of zero program
tracing, in order to be practical for production systems.
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Static analysis and symbolic execution were used to cre-
ate vulnerability signatures [4] and to show that it is possi-
ble to automatically create exploits from patches [5]. ESD is
similar to this work in that it aims to create inputs that ex-
ecute the program toward a certain vulnerability. However,
ESD addresses bugs more broadly than just input validation
bugs and is able to handle multi-threaded programs.

Bug Finding Tools – Schedules: Even though program
testing is different from debugging, we drew inspiration for
schedule synthesis from tools that search for concurrency
bugs, like Chess [29] and DeadlockFuzzer [21]. Still, there
exist major differences. These tools exercise target programs
in a special environment and, when a bug occurs, the tools
are able to replay those bugs. In contrast, ESD reproduces
bugs discovered in the field by end users, in which case re-
quiring the program to run in a special setting is not feasible.
Chess and DeadlockFuzzer also require the existence of a
test case that provides all required program input, whereas
ESD automatically infers this input.

Another important difference appears in the use of heuris-
tics. Chess, for example, employs a technique called itera-
tive context bounding (ICB) [29]. ICB assumes that priori-
tizing executions with fewer context switches is an efficient
way to find concurrency bugs, so Chess repeatedly runs an
existing test case, each time with a different schedule, and
limits the total number of possible context switches, as in
ICB. When searching for a specific bug, we found ESD’s
approach to be much faster. Also, ESD achieves scalability
without having to bound the number of context switches. We
repeat, however, that Chess’s goals are different from ESD’s,
so direct performance comparisons must be done carefully.

Similarly to RaceFuzzer [35], ESD dynamically detects
potential data races and performs context switches before
memory accesses suspected to be in a race. However, ESD’s
approach is more precise, because it is targeted at a specific
bug and uses checkpoints to explore alternate thread inter-
leavings, unlike RaceFuzzer’s random scheduler. Moreover,
by using symbolic execution, ESD can achieve substantially
higher coverage for data race detection.

Record/Replay: A classic way of reproducing bugs is by
using whole-system replay: the application is run inside a
specialized virtual machine, which captures all relevant de-
tails of an execution, enabling it to be replayed later [12,
13]. This approach works well for bugs that occur relatively
frequently. However, concurrency bugs in production are
rare occurrences, so the performance and space overhead of
always-on recording of the entire execution offers less pay-
back. Reverse debugging [24] uses VMs to travel back and
forth in an execution, which is useful in dealing with hard-
to-reproduce bugs; this approach typically incurs prohibitive
recording overhead for bugs that occur infrequently. In con-
trast, ESD requires no tracing, so it presents unique advan-
tages in dealing with rare events, such as concurrency bugs.

Higher-level replay systems, like R2 [20], can record li-
brary interactions and replay them. These approaches typi-
cally incur lower overhead than whole-system replay. ESD’s
playback environment uses similar techniques, extending
them with the ability to play back asynchronous events (such
as thread preemptions) that are crucial to reproducing con-
currency bugs. The goal of R2 is to observe the interactions
that lead to a particular problem. ESD, on the other hand, can
synthesize the desired execution, thus obviating the need for
any runtime observations.

Recent work looked at replaying concurrency bugs, such
as data races, while aiming to minimize the amount of user-
side recording [2, 33]. While similar in spirit to ESD, these
tools still require recording all program inputs and the order
of synchronization operations, thus adding overheads as high
as 50%, which is hard to justify in production systems.

Aftersight [9] is an efficient way to observe and analyze
the behavior of running programs on production workloads.
Aftersight decouples analysis from normal execution by log-
ging non-deterministic VM inputs and replaying them on a
separate analysis platform. ESD, on the other hand does not
monitor the running program, rather merely requires a core-
dump to perform its analysis at the developer’s site.

10. Conclusion

This paper introduced execution synthesis, a technique for
automatically debugging real software. We presented ESD,
a practical tool that embodies this technique and alleviates
the burden of fixing hard-to-reproduce bugs. ESD starts from
a bug report and automatically synthesizes an execution that
causes the bug to manifest. Developers can then determin-
istically play back this execution in their favorite debugger
as many times as necessary to generate a fix. ESD requires
no program modifications and no runtime tracing, thus intro-
ducing no runtime overhead.

We showed ESD can reproduce, with no human interven-
tion, concurrency bugs and crashes reported in real applica-
tions. It took less than three minutes to synthesize explana-
tions for these bugs, which suggests ESD is practical for fre-
quent use during development and debugging. To our knowl-
edge, ESD is the first tool that can automatically synthesize
executions to reproduce bugs that occurred in the field, with-
out incurring the overhead of execution tracing.
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